
Fault Tolerant Instantaneous Utilization Factor
Schedulability of Real Time Tasks

 Kshama Kulkarni Radhakrishna Naik Vaishali Shinde
 MIT Aurangabad MIT Aurangabad MIT Aurangabad

Abstract.This paper put forwards review on single processor
scheduling algorithm to arrange periodic tasks for soft real
time system. The characteristics of the off-line scheduler are
that on the basis of rate monotonic algorithm, tasks are
scheduled and accomplishment is done on the basis of
Instantaneous Utilization Factor (IUF) scheduling algorithm.
The tolerances of max f faults which can occur at any point of
time equal to the largest relative dead line of the task set are
considered in it. The likelihood of completion of the task set is
checked based on the maximum workload requested by the
higher priority jobs within the released time and deadline of
the job of each task that is released at that instant. It provides
a possible copy titled recovery copy to be executed if any fault
occurs in the system to save the time. Tasks are alienated in to
number of sub tasks and are executed distinctly which
benefits the execution time by saving it and workload to be
executed for the recovery copy.

 Keyword: Real Time system, real time scheduling, transient
faults, fault tolerance, feasibility analysis.

I. INTRODUCTION
Tasks in hard real-time systems have rigorous limits. (i.e.
meeting task deadlines). The bargain of satisfying the
timing constraints, the desired service of the system must
be achieved. Fault occurs in to the service of the system
may cause the eccentricity [1].To avoid disastrous
corollaries, hard real-time systems have to satisfy all the
time limits even in the occurrence of faults. Effective Fault
tolerant scheduling can increase the chance to meet the
given deadline. A fault-tolerant system is one that
continues to perform its specified service in the presence of
hardware and/or software faults. Designing fault-tolerant
systems, mechanisms must be provided to ensure the
correctness of the expected service even in the presence of
faults. Due to the real-time nature of many fault-tolerant
systems, it is operational that fault tolerant facility provided
in such system does not bargain the timing constraints of
the real time applications.
Fault Tolerance is achieved in the computer systems, by
space or time [2][3]. Time redundancy is used in this paper
[2][3] to get the operative fault tolerance. Transient faults
are considered in this paper. When time redundancy in
case of fault is used, an error occurs and detected. This
faulty task is either re-executed or a substitute copy called
recovery copy is used for the execution. This execution of
recovery copy may cause a deadline miss.
This paper consists, a periodic task scheduling is presented
on uniprocessor for feasibility analysis of fault tolerant
fixed priority scheduling under the assumption of multiple
occurrences of faults .This analysis gives us the result of

exact feasibility test that will ensure, deadline can be met if
and only if the exact test is satisfied.
The proposed feasibility test can be used to any fixed
priority scheduling algorithm like Rate Monotonic or
Deadline Monotonic [5] policy. The relative deadline of
each task should not be greater than its period.
 Fault Model considered is same as used by R.M. Pathan in
[3]. Fault may occur in any task at any time, even in the
recovery operations. Possibilities of occurrence of faults are
as follow [3.]
 The inter-arrival time of two faults must be separated

by a minimum distance [6], [7], [8], [9], [10]
 At most one fault may occur in one task [10], [11]
 The recovery operation is simply the re-execution of

the original task [6], [7], [10], [12]
This article considers, multiple transient faults occurred in
hardware. Transient faults occurs frequently, common [13],
[14] and due to high complexity their number is
continuously increasing ,hence to achieve the fault
tolerance arise due to software faults we use Time
Redundancy. Due to transient faults a number of errors can
occur in a small duration of time interval [14] so there is lot
of applications where rate of occurrence of transient fault is
high.
The study activates about tolerating multiple transient fault
within that duration, R.M. Pathan’s Exact feasibility test
can determine whether a maximum of f faults can be
tolerated within any time interval of length ܦ௠௔௫ where
 .௠௔௫ is the largest relative deadline of a periodic task [3]ܦ
This paper consists a fault model in which the recovery
copies are considered in case of occurrence of fault. Due to
the occurrence of fault, recovery copy execution causes
Extra workload and time of execution which in turn
minimizes the total task execution.
IUF scheduling algorithm by Naik and Manthalkar [4]
proposes Task splitting which can be used with the FTRM
algorithm for all the task so that they should not miss their
deadline.
FT-IUF algorithm considers the original copy as a recovery
copy. Tasks are split in advance and executed individually
so that time is saved and deadline can be reached.
Organization of the paper:
The rest of paper is organized as follows. Section II
represents the related work. Section III represents the
system model with specifications of terminologies and the
flow of the model. Section IV represents the proposed work
related to the fault tolerance. Section V shows performance
evaluation of the proposed algorithm. Section VI represents
the performance analysis part. Section VII represents the
conclusion and future work for the proposed system.

Kshama Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4286-4291

www.ijcsit.com 4286

ISSN:0975-9646

II. RELATED WORK
Considering Real-Time scheduling fault tolerance problem
has been tackled by many researchers for criticality of the
tasks and its timing constraints.[3],[14],[8],[12].
The utilization bound for RM scheduling on uniprocessor
was derived by Ghosh et al. backup. Utilization concept
was sued for single and multiple transient faults [3][14].
Paper [12] by Liberto, Melhem and Mosse , exact
feasibility test for tolerating transient fault was derived for
EDF algorithm. They considered the recovery copy as a re-
execution of primary copy.[3]
Burns, Davis, and Punnekkat derived an exact fault tolerant
feasibility test for any fixed priority system using recovery
blocks or re-execution [8][3]. This study was lengthened by
using check point concept to recover the fault [10]. Based
on re-execution, an optimal fixed priority assignment to
tasks for fault-tolerant scheduling was proposed by Lima
and Burns [9].
After the first development of FTRM algorithm by Mr.
R.M. Pathan in 2010, there has been lot of development
done in fault tolerance mechanism like one by Mr. J Yin, H
Song, L Yuan & Q Cui on ‘A real time fault tolerant
scheduling algorithm for software / Hardware hybrid tasks.
Later Mr. W Qui, Z Zheng, X Wang and X Yang developed
an efficient fault tolerant scheduling algorithm for periodic
real time tasks in heterogeneous platforms. Analysis and
design of fault tolerant scheduling for real time tasks on
earth-observation satellite was developed by X Zhu, J
Wang, X Qin. J wang, X Zhu, W Bao developed a real time
fault tolerant scheduling based on primary back up
approach in virtualized clouds. Fault tolerant RT
scheduling algorithm for tolerating multiple transient faults
by R M Pathan presents a fault tolerant real time scheduling
algorithm, RM-FT, by extending the rate monotonic
scheduling for real time system.

2.1 Fault Tolerant Scheduling on Uniprocessor
Platform

This paper follows the basic mechanism of FTRM
algorithm developed by R. Pathan in [1]. It divides the
complete model in to 3 different groups and derived the
concept of FTRM algorithm. Detaching the calculation part
of Fault removal ,the basic assumptions are considered in
this paper.
A Task Model considers the fault tolerant scheduling of n
independent periodic tasks on uniprocessor. Each task
generates a sequence of jobs. Priority of tasks is assigned as
per RM scheduling policy. i.e. high priority task will be
executed first.
Fault model informs about the nature of fault. Transient
faults are considered here. It may be of software or
hardware. It is assumed that transient faults are not long
lived and may appear again. Main executing task is called a
primary copy. When a fault arises it creates an alternate
copy called recovery copy automatically. And re executes
the task with the same priority as of the primary copy.
Fault tolerant mechanism executes the primary copy at
normal condition. When a fault occurs a recovery copy is
automatically executed. If one fault occurred on that task a
single recovery copy is executed if faults are multiple then

the recovery copies equivalent to number of fault are
executed.[1]
At most f faults are considered in the maximum interval of
length of a task.

2.2 IUF Scheduling
IUF Scheduling algorithm, developed by Naik and
Manthalkar, divides the task in to number of quantum. It
makes use of IUF to split the task in to number of small
units based on the priority of highest utilization factor first.
It may change the original priority of the task to be
executed by RM scheduler. But task which is not feasible
by Rate Monotonic scheduler is feasible by IUF scheduler.

III. SYSTEM MODEL
This paper combines the concepts of IUF algorithm and
FTRM algorithm to find the solution for the problem of
feasibility of all tasks to be executed even in case of
occurrence of faults.
3.1 Concept of Task Split.
In the FTRM algorithm, the in the normal execution task
units get executed in the regular way of RM scheduling. If
fault occurs the execution stops and the recovery copy of
the task is automatically created gets executed after the
point where it was stopped its execution.
Thus it loses the work of execution before fault occurred.
WCET required completing the task after fault is more.
Hence lower priority task may not get enough time to
complete the tasks within its deadline. Solution to this
problem is to split the task in to number of units.
Example 3 units of task is split in to 3 different units

Figure 1: Example of Task Split.

IUF algorithm helps us to divide the task into number of
quantum. This quantum will minimize re-execution time
used to execute the recovery copy created at the occurrence
of fault.

3.2 Notations:
௜ܲ = Period of invocation of ith task.
 .௜= Computation time of ith taskܥ
௜ܷ = Utilization of ith task.

௝ܷ
௜ = Instantaneous utilization of ith task.

௝ܥ
௜ = Instantaneous remaining computation time of ith

 task for jth quantum iteration.

௝ܲ
௜ = Instantaneous remaining period of ith task..

ܳ௜= Quantum for which of ith task is applied to CPU
 for the execution.
Q = Total sum of quantum of execution of all tasks for tat
instant of time.

3 Units Task

1 2 3

Kshama Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4286-4291

www.ijcsit.com 4287

3.3 Division of System Model
To Find the fault tolerance and to form a system model,
study is divided into following parts [1]:
1. Task Model
2. Fault Model
3. Fault tolerant mechanism

3.3.1 Task Model.
We consider in a fault tolerant scheduling.
Periodic Task: n independent tasks
Task Set ߁	 ൌ 	 ሼ߬ଵ, ߬ଶ, … . ߬௡	ሽ on Uniprocessor.
 For a Task ߬௜
			݀݋݅ݎ݁ܲ ൌ 	 ௜ܶ,
		݈݁݊݅݀ܽ݁ܦ	݁ݒ݅ݐ݈ܴܽ݁ ൌ ,௜ܦ	
		ܶܧܥܹ			 ൌ 	.௜ܥ
 For ܶܽ݇ݏ	߬௜	, ௜ܦ			ݏݐܫ ൏ 		 ௜ܶ ,	
All the tasks are assumed to be released at zero.
Each Task ࣮ i generates a sequence of jobs.
		݇ݏܽܶ	݂݋	ܾ݋݆	݄ݐ݆ ௜ܶ 			ൌ 		 ߬௜	,௝			ݎ݋ܨ			݆ ൌ 1,2, … .∞
Step 1: Initially for given task set, calculate CPU
utilization of each task using formula [2]
 ܷ଴

௜ 	ൌ 		 ଴ܥ
௜/ ଴ܲ

௜		 `
 ܷ଴

௜ = Initial utilization of ݅௧௛	 task.
଴ܥ

௜
 = Initial Computation time.

 		 ଴ܲ
௜ = Initial period of invocation.

Based on utilization [ܷ଴
௜] the task which is having higher

value of utilization is mapped for the CPU.

Step2: Now let us calculate the value of ଵܷ

௜ 1 i.e. next
Instantaneous utilization Factor of ith task.
ଵܥ	

௜= 			ܥ଴
௜

 െܳ௜
 ଵܲ

௜	= ଴ܲ
௜ 	 – 	ܳ	

	݅ܳߑ ൌ 	ܳ.
 ଵܷ

௜ 	ൌ 		 ଵܥ
௜/ ଵܲ

௜		
ଵܷ
௜ = Instantaneous utilization of ݅௧௛	 task.

ଵܥ
௜
 = Instantaneous computation time of ݅௧௛	 task.

ଵܲ
௜ = Instantaneous period of invocation of ݅௧௛	 task.

Again the task which is having highest instantaneous
utilization will be having highest priority of execution for
second iteration quantum.
Likewise, calculate
௝ܥ																

௜= 			ܥ௝ିଵ
௜

 െܳ௜

 ௝ܲ
௜= 			 ௝ܲିଵ

௜
 –ܳ

 ∑ܳ݅ 	ൌ 	ܳ.
 ௝ܷ

௜ 	ൌ 		 ௝ܥ
௜/ ௝ܲ

௜		
 ݆	 ൌ .ݐ݊݅݋݌	݀݊݁	ܥܶܲ	

3.3.2 Fault Model.

Schedulability of fault model is done by a fault model.
Fault tolerant algorithm F.P.S. considers at most f fault
occurrence and their recovery. Time interval of fault
occurrence of f faults is ܦ௠௔௫. Faults are transient in nature
and occur in software or hardware. Hard ware faults are
assumed to be short-lived. Software faults are not
permanent in nature. If it is permanent then it is removed
by using time redundancy, by using recovery blocks.

3.3.3 Fault Tolerant Mechanism

It is based on time redundancy.
Time redundancy:
When a fault is detected faulty task is simply re-executed
when a job of a task is for the first time, it is called a
Primary copy of the task. Re-execution of the task or
executing recovery block is called recovery copy of that
task. It is executed after the CPU mapping when fault arise,
that corrupted copy is removed and recovery copy is
executed at the time of execution of task at either at free
slot or by shifting lower priority task to the next free slot of
processor.

IV. PROPOSED WORK

4.1 Architecture

Figure 2: Architecture of FT-IUF Scheduler.

Fault Tolerant IUF scheduling Algorithm.
1. Take input of tasks containing period, deadline.
2. Calculate the utilization factor for each task.
3. Check the schedulability for tasks according to their

utilization
4. Generate CPU mapping for tasks.
5. Execute the tasks according to the highest

instantaneous utilization.
6. Meanwhile if a fault occurs then a recovery copy is

created automatically so that the task can be re-
executed.

7. Check the processor Idle time and shift the recovery
copy of the task in that slot.

8. If the free slot is beyond its deadline then shift the
lower priority task to the free task and allocate the slot
to the task.

Assumptions.
 Transient Faults are Short Lived and may re-occur on

the same task.
 Removing and reloading time of recovery copy are

assumed equal to 0.
 Primary copy is re-executed as a recovery copy.

I
N
P
U
T

T
A
S
K

 TASK
SELECT

UPLOAD

CPU

RECOVERY COPY
 QUEUE

RUN TIME
 QUEUE

READY QUEUE

Kshama Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4286-4291

www.ijcsit.com 4288

V. PERFORMANCE EVALUATION
5.1 Case Study I: FT-IUF scheduling Algorithm
Consider the following task set
T1 = (3,10), T2 = (3,15), T3 = (9,40)

1. Calculate initial utilization using equation
	ܷ଴

௜ 	ൌ 		 ଴ܥ
௜/ ଴ܲ

௜		

Table 1: Description of Task Set of Case Study 1:

After first step, in Table 1 it is observed that T1 has the
higher initial utilization so is mapped for execution.

For quantum 1,
Calculate the new values of ܥଵ, ଵܲ, and ଵܷ using the above
values.
Values can be calculated as follows:
଴ܥ			 =ଵଵܥ

ଵ
 െܳଵ

						 ଵܲ
ଵ	= ଴ܲ

ଵ	 – 	ܳ
 ∑ܳ௜ ൌ 1

	

			 ଵܷ
ଵ 	ൌ 		 ଵܥ

ଵ			 െ ܳଵ
ଵܲ
ଵ െ ܳ൘ 			

 			ൌ
3 െ 1

10 െ 1ൗ

 = 0.22

 ଵܷ
ଶ 	ൌ 		 ଵܥ

ଶ			 െ ܳଶ
ଵܲ
ଶ െ ܳ൘ 		

 = 3 െ 0
15 െ 1ൗ

 = 0.21

 ଵܷ
ଷ 	ൌ 		 ଵܥ

ଷ			 െ ܳଷ
ଵܲ
ଷ െ ܳ൘ 		

 ൌ 9 െ 0
40 െ 1ൗ

 = 0.23
Now we get the table as

Table 2: Task Set After first quantum of Case Study1.

Ti Ci Pi Ui
T1 2 9 0.22
T2 3 14 0.21
T3 9 39 0.23

As ܷଷ has the highest value it has the higher priority and

quantum ܳଷ will be set to 1.

Thus repeat the steps up to 40 as the T3 Task has the highest

deadline in our E.g.. The final mapping of the tasks will be

like in the figure.

Example. in case study can be simulated using IUF

scheduling as shown in Fig. 3

Figure 3: IUF Scheduling.
 IUF Scheduling algorithm splits the a task into

different subunits.
 Schedules the sub task as per the higher utilization

first.
 0 indicates the idle period of processor.

Consider the arrival of fault at the following tasks
instances.
 ܨଵ	= Second instance of 			 ଵܶ,ଵ.
 ܨଶ	=Second instance of ଵܶ,ଵ.
 ܨଷ	=Second instance of ଶܶ,ଵ
 ܨସ	=First instance of ଶܶ,ଶ
 ܨହ	=Second instance of T2,2
 ܨ଺	 =Second Instance of ଵܶ,ଷ
 ܨ଻ =Second instance of ଵܶ,ଷ

Now let the fault ܨଵ, occurred at (3)	 ଵܶ, So it will check its
deadline, and if there is any idle period of processor is
found it executes its recovery copy in that slot, otherwise it
will shift lower priority tasks to later idle periods. Thus
faulty task will change its sequence of priority as it suffers
due to fault. But all tasks get chance for the complete
execution.

Figure 4: Occurrence of fault.

Shuffled Tasks are as follows:
 ܨଵ		 on ଵܶ ሺ2 െ 3ሻshift to	0ሺ5 െ 6ሻ	 = ଵܶ
 ܨଶ on ଵܶ ሺ5 െ 6ሻshift to ଷܶ ሺ8 െ 9ሻ	 = ଵܶ
 ଷܶሺ8 െ 9ሻ	shift to 0ሺ38 െ 39ሻ = ଷܶ
 ܨଷ	on ଶܶሺ9 െ 10ሻshift to ଷܶሺ10 െ 11ሻ = ଶܶ
 	 ଷܶሺ10 െ 11ሻshift to 0ሺ39െሻ	=	 ଷܶ
 ܨସ	on	 ଶܶ	ሺ16 െ 17ሻshift to 0ሺ21 െ 22ሻ=	 ଶܶ
 ܨହ	on ଶܶ ሺ19 െ 20ሻshift to 0ሺ25 െ 26ሻ=T2
 ܨ଺	on		 ଵܶ (23-24) shift to 0ሺ26 െ 27ሻ=	 ଵܶ
 ܨ଻	on 	 ଵܶ ሺ26 െ 27ሻ shift to 0ሺ27 െ 28ሻ=	 ଵܶ

T1 T2 T3T1 T1T3T1T1T3T2T2T10T3

0 0 T1T2 00T2T1T2T1

T3 T2 T3T2 00000T1T1T10T3T2

 1 2 3 4 6

T3

105 7 8 9 11 12 13 14 15

21 22 23 24 25 26 27 16 17 18 19 20 28 29 30

31 32 33 34 35 36 37 38 39 40

T1,T2,T3 T1 T2

T1 T1,T2

T1 T2 T3F1 T1T3T1T1T2F3T2T1F2T3

0 0 T1T2 T3T3T2T1T2T1

T3 F4 T3T2 00T1F7T2T1F6T10T3F5

 1 2 3 4 6

T1

105 7 8 9 11 12 13 14 15

21 22 23 24 25 26 27 16 17 18 19 20 28 29 30

31 32 33 34 35 36 37 38 39 40

T1,T2,T3 T1 T3

T1 T2

Ti Ci Pi Ui

T1 3 10 0.3
T2 3 15 0.2
T3 9 40 0.225

Kshama Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4286-4291

www.ijcsit.com 4289

Table 3: Description of Task Set of Case Study 2.

Figure 5: IUF Scheduling.

Consider the arrival of fault at the following tasks
instances.
 ܨଵ= First instance of ଵܶ,ଵ..
 ܨଶ=Second instance of ଶܶ,ଵ

Figure 6 : Removal of fault.

After removal of fault shuffled tasks:
 ܨଵ on ଵܶ	ሺ1 െ 2ሻshift to ଷܶ	ሺ3 െ 4ሻ=	 ଵܶ
 ଷܶ	ሺ3 െ 4ሻ	shift to 0ሺ10 െ 11ሻ= ଷܶ
 ܨଶ on ଶܶ (3-4) shift to 0ሺ9 െ 10ሻ= ଶܶ

Table 4: Description of Task Set of Case Study3.

Figure 7: IUF Scheduling.

Consider the arrival of fault at the following tasks
instances.
 ܨଵ= Second instance of ଵܶ,ଵ..
 ܨଶ=Second instance of	 ଵܶ,ଵ.
 ܨଷ=Third instance of 	 ଶܶ,ଵ..
 ܨସ=Third instance of 	 ଶܶ,ଵ.
 ܨହ=Second instance of 	 ଶܶ,ଶ.,
 ܨ଺= First instance of 	 ଶܶ,ଵ

Figure 8 : Removal of Fault.

Shuffled Tasks are as follows:
 ܨଵ on ଵܶ ሺ1 െ 2ሻ shift to ଷܶ ሺ3 െ 4ሻ = ଵܶ
 ଷܶ ሺ3 െ 4ሻ shift to 0ሺ37 െ 38ሻ	= ଷܶ
 ܨଶ on ଵܶ ሺ3 െ 4ሻshift to ଷܶ ሺ6 െ 7ሻ = ଵܶ
 ଷܶ ሺ6 െ 7ሻ shift to 0ሺ38 െ 39ሻ = ଷܶ
 ܨଷ on ଶܶ ሺ8 െ 9ሻ shift to 0ሺ18 െ 19ሻ= ଶܶ
 ܨସ on	 ଶܶ ሺ18 െ 19ሻ	shift to 0ሺ19 െ 20ሻ= ଶܶ
 ܨହ on 	 ଵܶ	ሺ24 െ 25ሻshift to 0ሺ29 െ 30ሻ	=	 ଵܶ
 ܨ଺ on ଶܶ ሺ22 െ 23ሻ shift to 0ሺ30 െ 31ሻ= ଶܶ

VI. PERFORMANCE ANALYSIS.
Proposed algorithm FT-IUF is compared with FTRM
algorithm. Total faults occurred in the algorithm of each
case study are marked. Then a comparison between actual
time and the output of two algorithms is given in the table.

Table 5: Performance Analysis of Case Study1.

Table 6: Performance Analysis of Case Study2.

Table 7: Performance Analysis of Case Study3.

T1 T2 T3T1 T1T10T200T1T3T2T3

1 2 3 4 6

T1

105 7 8 9 11 12 13 14 15

T1,T2,T3 T1 T2 T1

F1 T2 T1T1 T1T10T2T3T2T1T3F2T3

1 2 3 4 6

T1

105 7 8 9 11 12 13 14 15

T1,T2,T3 T1 T2 T1

T1 T1 T3T2 T2T1T1T1T3T3T3T3T1T2

0 0 00 00T1T1T1

T1 T3 0T3 0T2T2T1T2T1T1T200 0

 1 2 3 4 6

T2

105 7 8 9 11 12 13 14 15

21 22 23 24 25 26 27 16 17 18 19 20 28 29 30

31 32 33 34 35 36 37 38 39

T1,T2,T3 T1

T1,T2 T1

T1 F1 F2T2 T2T1T1T1T3T3T3T1T1T2

T2 0 00 T3T3T1T1T1

T1 T3 F4T3 T1T2T2T1T2F5T1F600T2

 1 2 3 4 6

F3

105 7 8 9 11 12 13 14 15

21 22 23 24 25 26 27 16 17 18 19 20 28 29 30

31 32 33 34 35 36 37 38 39

T1,T2,T3 T1

T1,T2 T1

Task Name Period Deadline
T1 2 6
T2 2 10
T3 3 15

Task Name Period Deadline
T1 3 10
T2 4 20
T3 7 39

Number of
Faults

Actual
period.

Number of
fault

occurrence

FTRM
Fault

occurrence

FT-IUF
Fault

occurrence

Total
Execution

time
30% 62.5% 47.5%

Average
Execution

time
0 32.5% 17.5%

Total
Execution

time
26.66% 46.66% 40%

Average
execution

Time
0 20% 13.66%

Total
Execution

Time
30.76% 56% 43.58%

Average
execution

Time
0 25.24% 12.82%

Kshama Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4286-4291

www.ijcsit.com 4290

Figure 9: Average Waiting Time Analysis

VII. CONCLUSION AND FUTURE SCOPE:

FT-IUF algorithm proposes a task split mechanism which
saves the work load of the task as recovery copy and
execution of primary copy both are divided in to small
pieces which will require less execution time as compared
to FTRM algorithm.
Proposed work of FT-IUF algorithm shows the quantitative
result as compared to FTRM algorithm as the task splitting
is getting advantageous for executing the recovery copy in
case of fault occurrence. we have presented the result in the
percentage form as FTRM algorithm are 32.5%,20% and
25.24% and of FT-IUF algorithm are 17.5%, 13.66% and
12.82% i.e. lesser than the FTRM algorithm which will be
improving the performance as the lower priority tasks are
now feasible for the execution
Hence task can be feasible in case of fault occurrence.
Feasibility of the system increase and hence performance
of the system is improved.
FT-IUF algorithm can be implemented further for aperiodic
tasks in the real time scheduling. When an aperiodic task
appears to the algorithm then its fault tolerant policy could
be designed in the future scope.

REFERENCES

[1] H. Aydin. Exact Fault-Sensitive Feasibility Analysis of Real Time
Tasks. IEEE Trans.on Comp.,56(10), Year 2007, PP 1372-1386.

[2] I. Koren and C.M.Krishna. Fault-Tolerant System. Morgan
Kaufmann, Year 2007.

[3] Risat Mahmud Pathan and Jan Jonsson,” Exact Fault-Tolerant
Feasibility analysis of Fixed –Priority Real Time tasks”. DOI
10.1109/RTCSA.Year 2010,PP 27-48.

[4] Radhakrishna Naik1, R.R.Manthalkar2 “Instantaneous Utilization
Based Scheduling Algorithms for Real Time Systems”, Pune
University1, SGGS Nanded2,Year. 2011, PP.654-662.

[5] J. Y. T. Leung and J. Whitehead. On the Complexity of Fixed-
Priority Scheduling of Periodic, Real-Time Tasks. Performance
Evaluation, 2:Year.1982, PP 237–250.

[6] S. Ghosh,R.Melhem,and D.Mosse. Enhancing Real-Time Schedules
to Tolerate Transient Faults.In Proc.of the RTSS,Year 1995,PP 120-
129.

[7] M. Pandya and M. Malek. Minimum Achievable Utilization for
Fault-Tolerant Processing of Periodic Tasks IEEE Trans. on Comp.,
47(10):Year.1998, PP 1102–1112.

[8] A. Burns, R. Davis, and S. Punnekkat. Feasibility Analysis of Fault-
Tolerant Real-Time Task Sets. In Proc. of the ECRTS, Year. 1996,
PP 522–527.

[9] G. M. de A. Lima and A. Burns. An Optimal Fixed-Priority
Assignment Algorithm for Supporting Fault-Tolerant Hard Real-
Time Systems. IEEE Trans. on Comp., 52(10):Year.2003, PP 1332–
346.

[10] S. Punnekkat, A. Burns, and R. Davis. Analysis of Check pointing
for Real-Time Systems. Real-Time Systems., 20(1):Year.2001, PP
83–102.

[11] C.-C. Han, K.G. Shin, and J. Wu. A Fault-Tolerant Scheduling
Algorithm for Real-Time Periodic Tasks with Possible Software
Faults. IEEE Trans. on Comp., 52(3): Year 2003, PP 362-372.

[12] F. Liberato, R. Melhem, and D. Moss´e. Tolerance to Multiple
Transient Faults for periodic Tasks in Hard Real-Time Systems.
IEEE Trans. on Comp., 49(9):Year.2000, PP 906–914.

[13] R. K.. Iyer , D. J. Rossetti, and M.C. Hsueh. Measurement and
Modeling of Computer Reliability as Affected by System Activity.
ACM Trans. on Comp. Syst. 4(3)Year 1986, PP 214,237.

[14] A. Campbell, P. McDonald,and K. Ray. Single Event Upset Rates in
Space. IEEE Trans. on Nuclear Sci.,39(6), Year 1992, PP 1828-
1835.

[15] S.Ghosh,R.Melhem,and D.Mosse, and J. S. Sarma Fault-Tolerant
Rate Monotonic Scheduling.Real Time Systems15(2) Year 1998,PP
149-181.

0

5

10

15

20

25

30

35

CS1 CS2 CS3

A
ve

ra
ge

 W
ai

ti
n

g
T

im
e

Case Study

FTRM

FTIUF

Kshama Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4286-4291

www.ijcsit.com 4291

